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breadth which may amount to several percent. How- 
ever this is an increase which results from a spreading 
out at the base of peak, it is not the kind of increase 
in breadth which we normally look for in comparing 
two peaks. ,The breadth at half maximum intensity 
represents more closely the quantity which is used in 
practice. Although there is a small increase in this 
kind of breadth, the magnitude is too small to be of 
importance or to be experimentally observable. 

I am indebted to Dr B. D. Cullity for a preliminary 
discussion of powder pattern broadening by tempera- 
ture vibration. 
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A summary is given of some work which has been performed to identify those special points, lines, 
and planes of symmetry that have been omitted from published tables of irreducible representations 
of space groups. In order to have a complete set of all the irreducible representations of every space 
group, it is necessary to determine the irreducible representations for these additional wave vectors 
in order to supplement the existing published sets of tables. The generation of these supplementary 
tables is reported. 

1. Introduction 

The irreducible representations of space groups have 
been used for many years for labelling the electronic 
band structures of crystalline solids. More recently, 
their use has been extended to labelling phonon dis- 
persion relations and the energy eigenstates for other 
particles or quasi-particles. In addition to providing 
a useful scheme for labelling energy bands or disper- 
sion relations, the irreducible representations of the 
space groups can also be used to predict essential 
degeneracies, to simplify the calculation of electronic 
band structures or of phonon dispersion relations, and 
in the determination of selection rules for processes in- 
volving electrons or phonons in crystalline solids; for 
details see, for example, Cracknell (1974, 1975). 

Tables of irreducible representations were first 
published for three important symmorphic space 
groups, Pm3m(O~), Fm3m(OSh), and lm3m(O 9) by Bou- 
ckaert, Smoluchowski & Wigner (1936) and for two 
of the more important non-symmorphic space groups, 
P6Jmmc(D4h) and Fd3m(07), by Herring (1942). Since 
then, many papers have been published giving tables 
of the irreducible representations of various selections 
of space groups. During the last few years there have 
been several systematic attempts to publish complete 
sets of tables of irreducible representations for all the 
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230 classical space groups (Faddeyev, 1964; Kovalev, 
1965; Miller & Love, 1967; Zak, Casher, GliJck & 
Gur, 1969; Bradley & Cracknell, 1972). Some recent 
work which we have been doing, in connexion with 
the reduction of Kronecker products of space-group 
representations, has made us realize that each of these 
published sets of tables contains some deficiencies. We 
shall concern ourselves primarily with the tables of 
Miller & Love (1967), which we shall refer to hereafter 
as M & L, because they are the most explicit tables 
and also, being computer-generated, they are in the 
most convenient form for use in further computer- 
based calculations. 

The points that we wish to make concern (i) the 
completeness of the identification of special points and 
lines of symmetry, without restrictions being imposed 
on the axial ratios for certain space groups (see § 2), 
(ii) the systematic identification of planes of symmetry 
in all space groups (see § 3), and (iii) the determination 
of the irreducible representations for all distinct wave 
vectors in the 'representation domain',  q~, which for 
many space groups is larger than the 'basic domain',  g2. 

In the space available in this journal we shall only 
be able to summarize our work on these topics. There 
are, inevitably, a considerable number of new diagrams 
and tables that we have had to construct but which 
cannot be included here.* 

* The diagrams and tables are all included in a paper. 
On the completeness of tables of irreducible representations o.( 
the classical space groups (Davies & Cracknell, 1976). 
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2. Special points and lines of symmetry 

Brillouin zones for the various space groups are illus- 
trated on pages I24-I31 of  M & L. However,  for cer- 
tain space groups the appearance of  the Brillouin zone 
may be different for different values of the axial ratios. 
In each such case M & L only considered one of  the 
possible sets of  axial ratios. Thus, for example, the 
Brillouin zone used by M & L for the or thorhombic  C 
space groups is reproduced in Fig. l(a). In fact this 
diagram corresponds to b > a. In the tables of  M & L 
any given or thorhombic  C space group is only con- 
sidered in one orientation, relative to the chosen x, y, 
and z axes. It is therefore necessary, for completeness, 
to consider the possibility b < a as well; this leads to 
a Brillouin zone with a rather  different appearance 
which is illustrated in Fig. l(b). Many  of the special 
points and lines of  symmetry are common to both 
diagrams. However,  there are two lines of  symmetry,  
labelled F and G in Fig. l(b) which are not present in 
Fig. l(a) and which were not included in the tables of 
M & L. Since these lines of  symmetry do not pass 
through F, the determination of  the irreducible rep- 
resentations for these wave vectors is not entirely triv- 
ial. Similar cases of  restrictions on the axial ratios ap- 
ply to several other Brillouin zones illustrated by M 
& L, see Table 1. Other  possible restrictions on the 
axial ratios are indicated in the r ight-hand part  of  
Table 1 and the corresponding illustrations were given 
in the book by Bradley & Cracknell  (1972), which we 
shall refer to as B & C. We have determined the ir- 
reducible representations for these addit ional wave 
vectors. 

3. Planes of symmetry 

Suppose that  we consider two space groups Go and G, 
which are based on the same Bravais lattice and which 

have isogonal point groups P0 and P, respectively, 
where P0 is the holosymmetric  point group of  that  
crystal system and P is a subgroup of  P0. We shall 
refer to a space group as a holosymmetr ic  space group 
if its isogonal point group is the holosymmetric  point 
group of  the appropria te  crystal system. Thus Go is a 
holosymmetric space group but G is not. In the con- 
struction of  tables of  space-group representations, both 
by M & L and by B & C, the t reatment  of  planes of 
symmetry for any given space group varied according 
to whether the space group is a holosymmetric space 
group or not. 

?. 

Lo~ : +, 

. . . . . . .  
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(a) 
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Fig. 1. Brillouin zone for orthorhombic, C, space groups, (a) 
b>a, and (b) b<a. 

Table 1. Restrictions on axial  ratios f o r  diagrams o f  

Fig. of Fig. of 
Bravais Lattice Restrictions M & L B & C 
Triclinic, P * 2 - 
Monoclinic, P * 3 - 
Monoclinic, B (C) * 4 - 
Orthorhombic, P None 5 3-5 
Orthorhombic, C b > a 6 3"6 (b) 
Orthorhombic, F l/a2> 1/bS+ 1/c s 7 3.8 (d) 

Orthorhombic, I a > b > c or a > e > b 8 3"7 (a) 

Tetragonal, P None 9 3.9 
Tetragonal, I a > c 10 3.10 (a) 
Cubic, P None 11 3.13 
Cubic, F None 12 3.14 
Cubic, I None 13 3.15 
Trigonal, R a > I/2c 14 3.11 (a) 
Hexagonal, P None 15 3.12 

Brillouin zones 

Other possible Fig. of 
restrictions B & C 
Unrestricted 3-2 
Unrestricted 3.3 
Unrestricted 3"4 

b<a 3"6 (a) 
I/b 2 > 1/c2+ 1/a 2 3"8 (c) 
1/C 2 > l /a2+ 1/b 2 3"8 (b) 
1/a 2 < l / b  s + l / c  s ] 
1/bS < 1]cZ + 1~aS i 3-8 (a) 
1/c s < 1/a s + 1 Ib s 
b > a > c  or b > c > a  3-7 (b) 
c > b > a  or c > a > b  3"7 (c) 

a<c 3-10 (b) 

a < l/2c 3-11 (b) 

* For triclinic and monoclinic lattices the restrictions are complicated. This difficulty is avoided by B & C by using the fun- 
damental unit cell in place of the Wigner-Seitz unit cell in the definition of a Brillouin zone. 
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For each holosymmetric space group the wave vec- 
tors corresponding to special points of symmetry and 
lines of symmetry were identified by M & L and by 
B & C. But if k0 is a wave vector which describes a 
plane of symmetry in a holosymmetric space group Go, 
then k0 was deliberately omitted from both sets of 
tables. If k0 is a wave vector which describes a plane 
of symmetry in G, which is not a holosymmetric space 
group, then k0 may or may not be included in those 
tables. If k0 corresponds to a plane of symmetry in G 
and the same k0 also corresponds to a plane of sym- 
metry in Go then k0 was omitted from the tables for G. 
However, if k0 corresponds to a plane of symmetry in 
G but corresponds to a point or line of symmetry in 
Go, then k0 was included in the tables for G. The reasons 
for this apparently rather arbitrary distinction be- 
tween the treatment of different planes of symmetry 
are historical; they are connected with the manner in 
which the tables were constructed and the purposes for 
which it was originally expected that the tables would 
be used. Thus, because there is no logical reason for 
excluding the planes of symmetry and because in many 
cases the planes of symmetry have become more im- 
portant in practice, we propose that for a complete 
identification of all the irreducible representations of 
the space groups all the planes of symmetry should be 
included in the tables for each space group. We have 
constructed the additional tables that are necessary for 
this, using the format of the tables of M & L. 

4. Representation domain and basic domain 

We first remind our readers of the definitions of the 
terms 'basic domain' and 'representation domain' 
(Bradley, Wallis & Cracknell, 1970; Bradley & Crack- 
nell, 1972): 

(1) For each Brillouin zone there is a basic domain, 
1-2, such that (~R£2) is equal to the whole Brillouin 

R 

zone, where R are the elements of the holosymmetric 
group, P0, of the appropriate crystal system. 

(2) For each space group there is a representation 
domain, ~, of the appropriate Brillouin zone, such 
that (~R~) is equal to the whole Brillouin zone, where 

R 

the sum over R runs through the elements of the 
isogonal point group, P, of that space group. 

For each of the holosymmetric space groups ~b can 
be taken to be identical with £2. But for the remaining 
space groups the volume of q5 is some small-integer 
multiple of the volume of £2. 

The importance of the representation domain, ~, 
lies in the fact that to determine all the (induced) ir- 
reducible representations of a space group, Go or G, 
it is necessary to obtain the irreducible representations 
of one wave vector in every distinct star for that space 
group. The representation domain is the smallest frac- 
tion of the Brillouin zone which can be guaranteed to 
contain at least one wave vector from every star. How- 
ever, the published sets of tables of space-group rep- 

resentations only give the irreducible representations 
for wave vectors within the basic domain, £2, and not 
necessarily throughout the whole of the representation 
domain, qs. It so happens that for every space group 
except one, it is possible to use a general procedure 
to determine the irreducible representations for a wave 
vector in (q~-£2) from those for some related wave 
vector in Q. The exception is the space group Pa3(T6), 
for which it is impossible to avoid some additional 
tabulation. An outline of the general procedure, as 
well as the inescapable additional tables for Pa3(T6), 
will be found in § 5.5 of B & C. We have now also 
made a detailed study of the representation domains 
for all the space groups, with particular reference to 
the problem of identifying for each space group those 
additional wave vectors in (~b-.c2) which it is necessary 
to include in order to obtain one, and only one, wave 
vector of each star. The results of this work will be 
published elsewhere in due course. 

5. Conclusion 

In the tables* referred to in the Introduction we have 
tabulated the irreducible representations for all the 
additional special points and lines of symmetry men- 
tioned in § 2 and for all the additional planes of sym- 
metry mentioned in § 3. We also have in hand the 
preparation of tables identifying all the new wave vec- 
tors in the region (~-f2) that belong to stars not in- 
cluded in +(2 for each space group. 

* See preceding footnote. 
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